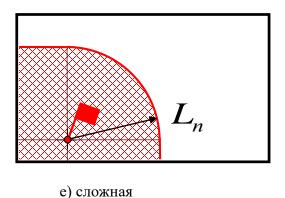
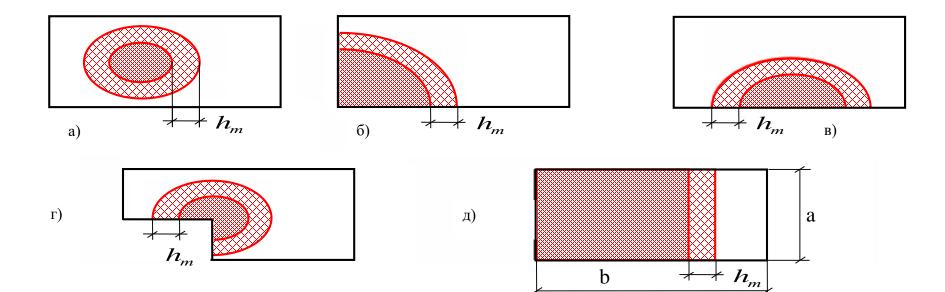

Основные геометрические формы площади пожара




а) угловая (круговая)

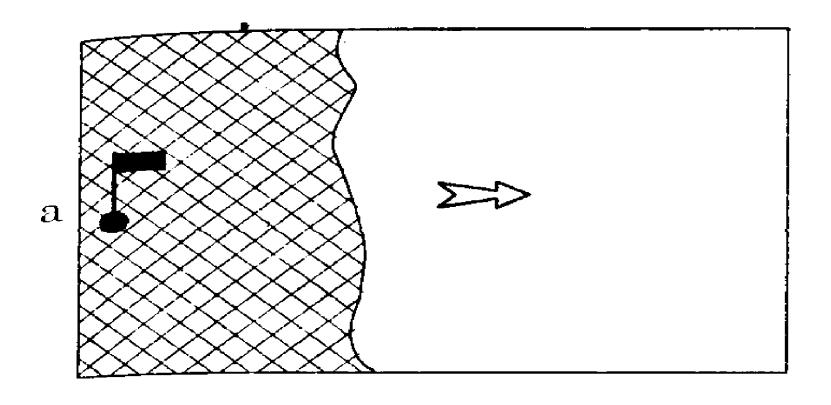
 L_n

д) прямоугольная

Форма	Значение	Основные параметры развития пожара		
площади пожара	угла, град.	площадь, м ²	периметр, м	фронт, м
круговая	360 (рис. 1.1, a)	$\mathbf{S}_{\mathbf{\Pi}} = \boldsymbol{\pi} \cdot \mathbf{L}_{\mathbf{\Pi}}^{2}$	$\mathbf{P}_{\mathbf{\Pi}} = 2 \cdot \mathbf{\pi} \cdot \mathbf{L}_{\mathbf{\Pi}}$	$\mathbf{\Phi}_{\mathbf{\Pi}} = 2 \cdot \mathbf{\pi} \cdot \mathbf{L}_{\mathbf{\Pi}}$
угловая	90 (рис. 1.1, б)	$\mathbf{S}_{\mathbf{\Pi}} = \frac{1}{4} \cdot \mathbf{\pi} \cdot \mathbf{L}_{\mathbf{\Pi}}^{2}$	$\mathbf{P}_{\mathbf{\Pi}} = \frac{1}{2} \cdot \mathbf{\pi} \cdot \mathbf{L}_{\mathbf{\Pi}} + 2 \cdot \mathbf{L}_{\mathbf{\Pi}}$	$\mathbf{\Phi}_{\mathbf{\Pi}} = \frac{1}{4} \cdot \mathbf{\pi} \cdot \mathbf{L}_{\mathbf{\Pi}}$
угловая	180 (рис. 1.1, в)	$\mathbf{S}_{\mathbf{\Pi}} = \frac{1}{2} \cdot \mathbf{\pi} \cdot \mathbf{L}_{\mathbf{\Pi}}^{2}$	$\mathbf{P}_{\mathbf{\Pi}} = \mathbf{\pi} \cdot \mathbf{L}_{\mathbf{\Pi}} + 2 \cdot \mathbf{L}_{\mathbf{\Pi}}$	$\Phi_{\Pi} = \pi \cdot L_{\Pi}$
угловая	270 (рис. 1.1, г)	$\mathbf{S}_{\mathbf{\Pi}} = \frac{3}{4} \cdot \mathbf{\pi} \cdot \mathbf{L}_{\mathbf{\Pi}}^{2}$	$\mathbf{P}_{\mathbf{\Pi}} = \frac{3}{2} \cdot \mathbf{\pi} \cdot \mathbf{L}_{\mathbf{\Pi}} + 2 \cdot \mathbf{L}_{\mathbf{\Pi}}$	$\Phi_{\mathbf{\Pi}} = \frac{3}{2} \cdot \mathbf{\pi} \cdot \mathbf{L}_{\mathbf{\Pi}}$
прямо- угольная	— (рис. 1.1, д)	$\mathbf{S}_{\mathbf{\Pi}} = \mathbf{a} \cdot \mathbf{L}_{\mathbf{\Pi}}$	$\mathbf{P}_{\mathbf{\Pi}} = 2 \cdot (\mathbf{a} + \cdot \mathbf{L}_{\mathbf{\Pi}})$	$\Phi_{\Pi} = a$

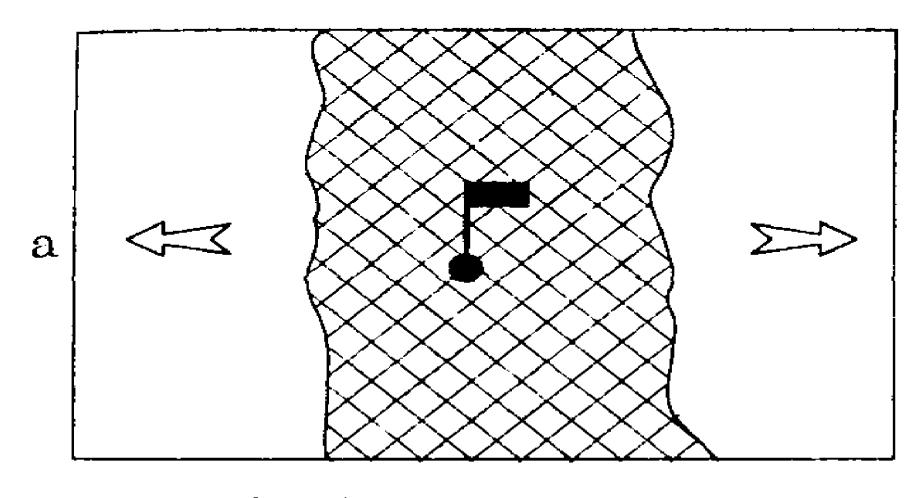
Определение времени свободного развития пожара

$$\tau_{cB} = \tau_{dc} + \tau_{c6} + \tau_{c7} + \tau_{6p}$$
, мин

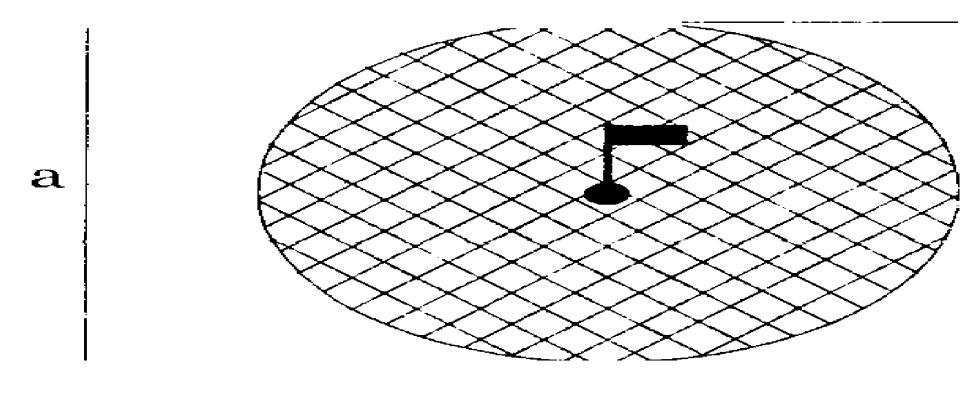

Определяем путь, пройденный огнем — L_{Π} (R_{Π} - радиус), за время развития пожара — t_{P} , м. в первые 10 мин. (мин.) принимается равной половине ее табличного значения

$$\mathbf{L}_{\mathbf{\Pi}} = 0.5 \cdot \mathbf{V}_{\mathbf{J}}^{\mathbf{TaoJ}} \cdot \mathbf{t}_{\mathbf{p}}$$

при значении $\mathbf{t_P} > 10$ мин. и до введения первых средств на тушение пожара принимается равной ее табличной величине

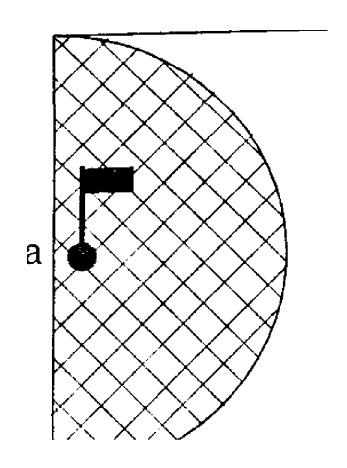

$$\mathbf{L}_{\mathbf{\Pi}} = 0.5 \cdot \mathbf{V}_{\mathbf{J}}^{\mathbf{TadJ}} \cdot 10 + \mathbf{V}_{\mathbf{J}}^{\mathbf{TadJ}} \cdot (\mathbf{t_{P}} - 10)$$

ОПРЕДЕЛЕНИЕ ФОРМЫ ПЛОЩАДИ (ПЕРИМЕТРА, ФРОНТА) ПОЖАРА и ПЛОЩАДИ ТУШЕНИЯ

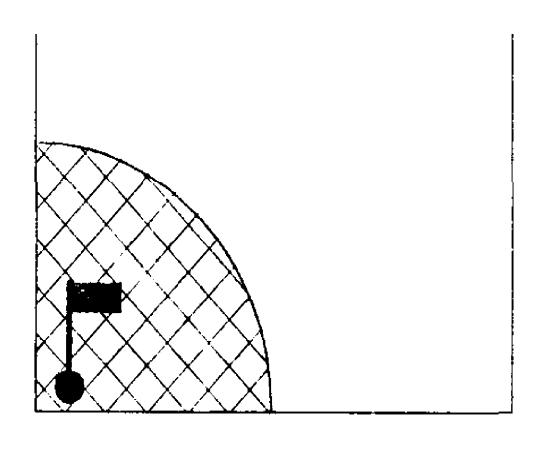


При прямоугольном развитии площадь пожара определяется по формулам:

– при одностороннем развитии пожара $S_{\scriptscriptstyle \mathrm{H}}=\mathrm{a}L.$



- при двухстороннем развитии пожара $S_{\pi} = 2aL,$



При круговом развитии пожара и круговом секторе площадь пожара определяется по формулам:

$$S_{\rm m}=\pi R^2$$

$$S_{\Pi}=0.5\pi R^2$$
 ,
$$_{\Pi ext{PM 9TOM}} \ L \leq rac{ ext{a}}{2} \ .$$

 $S_{\mbox{\scriptsize II}}=0.25\pi R^2 \,,$ при этом $L\leq {
m a}.$

Для прямоугольной формы пожара (рис.1)

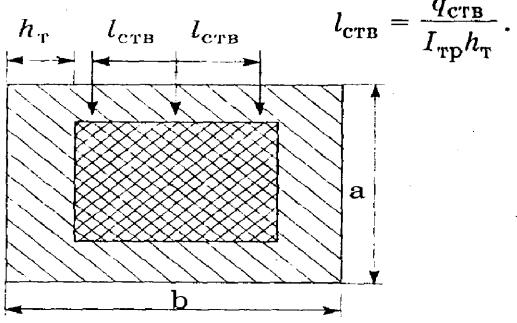
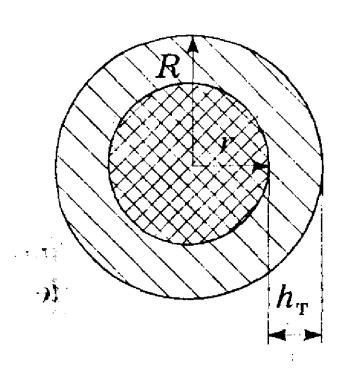


Рис.1. Прямоугольное развитие пожара


$$S_{\rm T} = nah_{\rm T}$$

где *n* — количество направлений введения стволов на тушение;

а — фронт пожара; h_{r} — глубина тушения стволом, м.

Для круговой или угловой формы пожара (рис.2)

$$S_{\mathrm{T}} = k\pi(R^2 - r^2),$$

T

Рис.2. Круговое развитие пожара

где k — коэффициент, учитывающий форму развития пожара (для кругового развития пожара k = 1, для полукругового k = 0.5 и для углового k = 0.5;

R — радиус площади пожара (рис.2), м;

r — радиус площади пожара, на которую не подается вода, м;

$$r = R - h_{\mathrm{T}}.$$

Требуемый расход воды для тушения пожара определяется по формуле:

 $Q_{\mathrm{TP}} = S_{\mathrm{II}} \; I_{\mathrm{TP}} \; ($ когда $S_{\mathrm{II}} = S_{\mathrm{T}} \; \mathrm{при} \; h_{\mathrm{T}} \geq R_{\mathrm{II}})$,

 $Q_{
m TP}$ = $S_{
m T}$ $I_{
m TP}$ (когда $S_{
m T}$ > $S_{
m T}$ при $h_{
m T}$ < $R_{
m II}$), где $S_{
m II}$ — площадь пожара, м 2 ;

 $I_{\rm Tp}$ — требуемая интенсивность подачи воды для тушения пожара, $\pi/(c \cdot M^2)$;

 $R_{\rm ff}$ — радиус площади пожара, м;

 $S_{\rm T}$ — площадь тушения, т.е. площадь пожара на которую подается вода в данный момент времени, м 2 .

Определяем требуемый расход воды для защиты:

$$Q_{\rm Tp.3} = S_3 I'_{\rm Tp}$$
 или $Q_{\rm Tp.3} = L_{\rm H} I''_{\rm Tp}$,

где S_3 — площадь защищаемых аппаратов или конструкций, м 2 ;

 $I'_{\text{тр}}$ — требуемая интенсивность подачи воды защиты аппаратов или конструкций, л/(с·м);

 $L_{\rm n}$ — периметр защищаемого аппарата или длина защищаемой конструкции, м;

 $I''_{\rm Tp}$ — требуемая интенсивность подачи воды для защиты, $\pi/(c\cdot M)$.

Определение общего требуемого расхода огнетушащих веществ на тушение и защиту

$$\mathbf{Q}_{\mathrm{Tp}} = \mathbf{Q}_{\mathrm{Tp}}^{\mathrm{T}} + \mathbf{Q}_{\mathrm{Tp}}^{\mathrm{3}},$$

Определяем количество стволов для тушения пожара:

$$N_{ ext{CTB.T}} = rac{Q_{ ext{Tp}}}{q_{ ext{CTB}}},$$

где $q_{\rm ств}$ — расход воды из ствола, л/с.

Расходы приборов подачи огнетушащих средств принимаются по приложениям 12-14. Для упрощения расчетов допускается принимать расход для ствола РСК-50 равным $3.5\,$ л/с, а для ствола РС-70 — $7\,$ л/с.

Определяем количество стволов для защиты

$$N_{\text{ctb.3}} = \frac{Q_{\text{tp.3}}}{q_{\text{ctb}}}.$$

Стволы для защиты смежных помещений определяются исходя из обстановки, сложившейся на пожаре и конструктивнопланировочных особенностей объекта.

Фактический расход — это количество огнетушащего средства, фактически подаваемого в единицу времени:

$$Q_{\oplus} = n_{\text{np}} q_{\text{np}}$$
.

ппр — число технических приборов (стволов) для подачи огнетущащего средства на тушение пожара или защиту объекта;

 $q_{\rm np}$ — производительность прибора для подачи огнетущащего средства, л/с, м³/с, кг/с.

Фактический расход огнетущащего средства не может быть меньше требуемого, но может быть больше его.

$$Q_{\text{th}} \ge Q_{\text{Tp}}$$
,

5. Определяем численность личного состава – $N_{\pi/c}$ необходимого для

тушения пожара, чел:

Общую численность личного состава определяют путем суммирования числа людей, занятых на проведении различных видов действий, учитывая обстановку на пожаре и условия его тушения.

$$N_{\pi/c} = (\sum n_i^{\pi/c}) \cdot K_p$$

где $\mathbf{n_i}^{.1/c}$ – количество личного состава необходимого для выполнения i—того вида работы (табл. 5.2);

 ${\bf K_p}$ — коэффициент, учитывающий резерв личного состава и сложность выполняемых работ (${\bf K_p}$ = 1,0...1,5).

Ориентировочные нормативы необходимой численности личного состава для выполнения различных видов работ на пожаре приведены в табл. 5.2.

Вид выполняемых работ	Кол-во л/с (n _i ^{л/с}), чел,
1	2
Работа со стволом РС-50 на ровной плоскости	
(с земли, пола и т.д.)	1
Работа со стволом РС-50 на крыше здания	2
Работа со стволом РС-70	23
Работа со стволом РС-50 или РС-70	34
в атмосфере, непригодной для дыхания	(звено ГДЗС)
Работа с переносным лафетным стволом	34
Работа с воздушно-пенным стволом и генератором ГПС-600	2
Работа с генератором ГПС-2000	34

т

Установка пеноподъемника	56
Установка выдвижной переносной пожарной лестницы	2
Страховка выдвижной переносной пожарной лестницы после ее установки	1
Разведка в задымленном помещении	3 (звено ГДЗС)
Разведка в больших подвалах, туннелях, метро,	5
бесфонарных зданиях и т.п.	(звено ГДЗС)
Спасение пострадавших из задымленного помещения	
и тяжелобольных	2
Спасение людей по пожарным лестницам и с помощью	
веревки (на участке спасения)	45

- 6. Определяем требуемое количество пожарных отделений $N_{\text{отд}}$ для тушения пожара:
 - при наличии в гарнизоне преимущественно АЦ

$$\mathbf{N}_{\mathbf{0}\mathbf{T}\mathbf{\mathcal{I}}} = \frac{\mathbf{N}_{\mathbf{\mathcal{I}}/\mathbf{c}}}{4};$$

при наличии в гарнизоне АЦ и АН (АНР)

$$N_{\text{отд}} = \frac{N_{\text{Л}/c}}{5}.$$

Порядок расчета сил и средств на тушение пожаров в вертикальных стальных резервуарах.

1. Определяем необходимое количество водяных стволов на охлаждение горящего резервуара – $N_{\text{охл}}^{\ \ \Gamma}$:

$$\mathbf{N_{0XJI}}^{\Gamma} = \frac{\mathbf{P_{\Gamma} \cdot I_{TP}}^{\Gamma}}{\mathbf{q_{CTB}}},\tag{6.1}$$

где P_{Γ} – периметр горящего резервуара, м (табл. 6.2);

 ${\bf q}_{\rm crb}$ — расход воды из одного ручного (лафетного) пожарного ствола, л/с

2. Определяем необходимое количество стволов на охлаждение соседнего

резервуара – $N_{0x_{J\!I}}^{c}$:

$$N_{0X,I}^{c} = \frac{0.5 \cdot P_c \cdot I_{Tp}^{c}}{q_{cTB}}, \qquad (6.2)$$

где P_c – периметр соседнего резервуара, м (табл. 6.2);

 $I_{\text{тр}}^{\ \ c}$ – требуемая интенсивность подачи воды для охлаждения соседнего резервуара, л/(с·м), (табл. 6.1).

Расчет стволов производится отдельно для каждого соседнего резервуара.

3. Определяем требуемое количество отделений для охлаждения

резервуаров – $N_{0TД}^{0XЛ}$:

$$N_{otd}^{oxj} = \frac{N_{oxj}^{r}}{n_{ctb}^{J(PC-70)}} + \sum \frac{N_{oxj}^{r}}{n_{ctb}^{J(PC-70)}},$$

где $\mathbf{n}_{\mathbf{crb}}^{\mathbf{J(PC-70)}}$ – количество лафетных стволов (стволов PC-70), подаваемых одним отделением, шт.

Одно отделение может обеспечить подачу одного лафетного ствола или двух стволов PC-70.

4. Определяем требуемое количество генераторов – $N_{\Gamma IIC}$, для

проведения пенной атаки:

$$N_{\Gamma\Pi C} = \frac{S_{\pi} \cdot I_{\tau p}^{p-p}}{q_{c\tau B}^{p-p}},$$

где \mathbf{S}_{11} – площадь горения поверхности жидкости в резервуаре, м 2 (табл. 6.2);

 I_{Tp}^{p-p} – требуемая интенсивность подачи водного раствора пенообразователя на тушение пожара, л/(с·м²) (табл. 6.3); q_{crb}^{p-p} – расход раствора пенообразователя из пеногенератора, л/с (табл.

5. Определяем требуемое количество пенообразователя – $V_{\Pi O}$ на тушение пожара:

$$\mathbf{V_{\Pi O}} = \mathbf{N_{\Gamma \Pi C}} \cdot \mathbf{q_{\Gamma \Pi C}^{no}} \cdot \mathbf{t_H} \cdot 60 \cdot \mathbf{K_3},$$

где $\mathbf{q}_{\Gamma\Pi\mathbf{C}}^{\mathbf{no}}$ – расход ГПС по пенообразователю (6-% концентрация раствора), л/с (табл. 2.4);

 $t_{\rm H} = 15\,$ мин. — нормативное время проведения пенной атаки;

 $K_3 = 3$ – трехкратный запас пенообразователя.

Определение времени работы пенных стволов и генераторов по запасу

<u>пенообразователя</u> – $\mathbf{t_{P}}^{H_{2}\mathbf{0}}$, мин.:

$$\mathbf{t_{P}}^{\mathbf{no}} = \frac{\mathbf{V^{no}}}{\sum \mathbf{N_{ctb}} \cdot \mathbf{q_{ctb}^{no}} \cdot 60}$$

где V^{n0} – вместимость бака для пенообразователя, л (табл. 3.1 – 3.4);

 $\mathbf{q_{cтв}^{no}}$ – расход прибора тушения по пенообразователю, л/с (табл.2.4).